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AVOIDING THE ORDER REDUCTION 
OF RUNGE-KUTTA METHODS 

FOR LINEAR INITIAL BOUNDARY VALUE PROBLEMS 

M. P. CALVO AND C. PALENCIA 

ABSTRACT. A new strategy to avoid the order reduction of Runge-Kutta meth- 
ods when integrating linear, autonomous, nonhomogeneous initial boundary 
value problems is presented. The solution is decomposed into two parts. One 
of them can be computed directly in terms of the data and the other satisfies 
an initial value problem without any order reduction. A numerical illustration 
is given. This idea applies to practical problems, where spatial discretization 
is also required, leading to the full order both in space and time. 

1. INTRODUCTION 

Let us consider an abstract initial value problem (IVP) 

(1.1) u'(t) = Au(t)+ f (t), O 
< t < T, 

u(0) 
= 

U0, 
where A : D(A) C X -- X is the infinitesimal generator of a Co-semigroup in 
a Banach space X, f : [0, T] --? X and u0 E X. It is well known that many 
evolutionary problems of practical interest, either hyperbolic or parabolic, can be 
written in this form [28]. 

Problem (1.1) is integrated in time by using a Runge-Kutta (RK) method with 
Butcher array 

(1.2) c 
A 

bT 

with c = (c)I RE , IR, b (b) R A- A (aj) ,j= e Rsxs. Given an 
approximation un X to u(tn), 0 < t, < T, the numerical approximation un+l to 

u(tn+l) at tn+l = 
tn + kn < T is defined by 

(1.3) un+l = 
Un + kn(bT 0 A)Un + kn(bT 0 I)F(tn), 

where F(tn) = (f(tn + 
knci))i=l 

and Un E Xs is the solution of 

(1.4) U, = e 0 un + kn(A ? A)Un + kn(A 0 I)F(tn), 
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with e = [1,... , 1]T E RS. Here, and throughout the paper, I stands for the 

identity operator in any space. It is known that for sufficiently small step-sizes 
kn, (1.4) possesses a unique solution [5]. Let u E Cp+([O, T], X) be a solution of (1.1), 

p being the classical order of the method. Under natural stability requirements, 
for fixed step-sizes kn = k and homogeneous problems (i.e., f = 0), the error 

Ilu(tn) 
- uII behaves like O(kP) [11]. However, for nonhomogeneous problems and 

unbounded operators A, it turns out that the classical order p is not attained [10, 24, 
32]. This is the so-called order reduction phenomenon. In fact, for nonhomogeneous 
problems the order of convergence is rather governed by the stage order q of the 
method. Set 

wl = c' - IAc'-1, 1 < 1 < p, 

where c' = 
(c)=1, 

and co = e. Recall that q is defined as the largest integer for 
which wl - 0, 1 < 1 < q. Typically the order of convergence is min{p, q + 1 + 0} 
with 0 < 0 < 2 (possibly 0 is not integer) [24]. Let us point out that, in the context 
of PDEs, this order reduction does not occur in the interior of the spatial domain 

[21]. 
IVPs of the form (1.1) are a particular instance of the more general initial bound- 

ary value problems (IBVPs) 

u'(t) = Au(t) + f(t), 0 < t <T, 
(1.5) u(0) = 0o, 

au(t) = g(t), 0< t < T, 

where A : D(A) C X - X is a linear extension of A, 0 is a linear mapping from 

D(A) to another Banach space Y and g : [0, T] --+ Y. The precise conditions to be 
fulfilled by these operators are described in Section 2 (see also [5]). Notice that the 
IVPs (1.1) arising in the applications always correspond to certain natural IBVPs 

(1.5) with g = 0. When (1.5) is integrated in time with the RK method (1.2), the 
order of convergence is min{p, q + 0} with 0 < 0 < 2 [5]. Thus, for IBVPs the order 
reduction is more severe than for IVPs. 

Different remedies have been proposed in the literature to avoid the order reduc- 
tion [1, 2, 3, 5, 12, 19, 20, 30, 32]. In the present paper a new strategy yielding the 
full order p in the time integration of (1.5) is introduced. This strategy cannot be 

applied directly to the IVP (1.1). However, this is not a serious drawback since in 

practice, as we mentioned above, (1.1) can be written in the format (1.5). 
The basic idea is as follows. The solution of (1.5) is decomposed as u(t) = 

v(t) + u*(t), where v(t) can be computed directly in terms of the data and u*(t) is 
the solution of a suitable IVP of the form (1.1). The key point of this construction is 
that u*(t) E D(AP-q), so that there is no order reduction in the RK approximation 
to u*(t). This strategy is studied in Section 3. Since the implementation of our 

strategy demands the solution of additional stationary problems at each step (see 
Remark 3.6 below), a high cost may result. Thus, though the strategy is interesting 
from a theoretical point of view, the standard implementation of an RK method 
with appropriate stage order could be advantageous in some instances. Numerical 

experiments are presented in Section 4, illustrating the theoretical results. In the 
final Section 5 it is shown that the remedy proposed in the present paper can 
also be accommodated in practical situations, where full discretizations of (1.5) are 
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required. It is worth mentioning here that, as different from previous approaches 
[2, 3], standard spatial discretizations can be used. 

2. ABSTRACT INITIAL BOUNDARY VALUE PROBLEMS 

In this section we describe briefly the setting of [28]. Let X, Y be two Banach 
spaces. The norms in X and Y and the operator norms are denoted by 11 -I. Let 
A : D(A) c X - X, : D(A) C X - Y be linear operators. We assume that 

H1. The operator (A, 0) : D(A) C X -- X x Y is closed. Moreover, : D(A) C 
X - Y is onto. 

H2. Set D(A) = ker(0) = {x E D(A)/ax = 0}. Then the restriction 
A = AID(A) : D(A) C X --+ X is the infinitesimal generator of a Co-semigroup 
S(t), t > 0, in X. 

It is well known that there exist M > 0 and w eI such that I S(t)] < Mewt, t > 0 
(see, e.g., [31]). 

In [28] it is proved that H1-H2 imply the following condition: For each A > w 
there exists a linear and bounded operator K(A) : Y -+ X such that, for each 
y E Y, x = K(A)y E X is the unique solution of the problem 

S(A- )x =0, (2.1) 
Ox-y. 

Let us denote, for an integer r > 0, Wr = D(A ) and W, = D(A'). It turns out 
that for each A > w the operator K(A)O : W, -+ Wr is bounded, where W, is 
endowed with the norm 

Iixll I lxll + IiAxIl .. + +IIArxil, x Wr 
which is equivalent to the graph-norm of A'. 

Let T > 0 and let f : [0, T] -+ X be continuous and g : [0, T] - Y a Cl-mapping. 
Assume that uo G W1 satisfies Ouo - g(O). Then the IBVP (1.5) has got a unique 
solution u: [0, T] --+ X [28]. 

Next we give an example to illustrate these concepts (see [4, 28] for additional 
examples). 

Example 2.1. Let us consider the initial boundary value problem for the one- 
dimensional heat equation 

ut(x, t) = uxx(x, t) + f(x, t), x [0, 1], 0 < t < T, 

u(x, 0) = uo(x), x E [0, 1], 
u(0, t) = go(t), 0 < t < T, 

u(1, t) = gil(t), 0 < t < T, 

where f : [0, 1] x [0, T] -* IR, uo : [0, 1] - IR, go, gl : [0, T] -+ IR are given functions. 
Problem (2.2) can be written in the abstract form (1.5) as follows: X = LP([0, 1]), 

1 < p < +oo, or X = Co([0, 1]) if p = +oo, Y = R x RI, D(A) = W2,p([0, 1]) = 

{ p E X /" E X }, Ap = " and Op = [p(O), c(1)]T, p c D(A). In this example 
D(A) = W2,p([0,1]) n Wo'P([0, 1]) = p W2,p([0,1])/(P(O) = p(1) = 0 } and 
for T = 

[~0~o 
1]T e Y, K(0) is the mapping sending x E [0, 1] to (1 - x)?o + x?l. 

Finally, for r > 1, Wr = W2Tp([0, 1]) and W, = { ( W2r'P([0, 1]) / P(2j)(0) - 

s(2j)(1) = 0, 0 < j < r }. 
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Assume that g E Cm([O, T], Y) and f(j) C Cm-j-([O, T], Wm-j-1), O < j < m- 
1, for some m > 1. Notice that in practice this is a natural requirement since these 
conditions only demand regularity of f(i) but they do not impose any restriction 
on the values of f(J) at the boundary of the spatial domain. This is opposite to the 
unnatural assumptions f(J)(t) E Wm-j-1, 0 < j 

_ 
m - 1, 0 < t < T (see example 

above). Under certain compatibility conditions among the data f, g and u0 (see 

[2]) the solution u: [0, T] -- X of (1.5) belongs to Cm([O, T],X)n C([O, T], W1). 
As long as H1 is satisfied, we can differentiate in equation (1.5) and get that 

u'(t) e W1 and 

Su"(t) = Au'(t) + f'(t), 0 <t < T, 
u'(t = g' (t), O < t < T. 

Moreover, since u'(t) = Au(t) + f(t) and f(t) E W1, we have u(t) E W2 and then 

u"(t) = A2u(t) + Af(t) + f'(t). 

In fact, by induction, it is easy to prove that, for 1 < 1 < m and 0 < t < T, 

u(t) E W1, u(l-1)(t) E W1 and 

(2.3) ul')(t) = Alu(t) 
+ 

E A--lf(J)(t) j=0 
au () (t) = g(1)()- 

This also yields 
1-1 

Alu(t) - ()(t) A--lf(j)(t) 
j=O 

so that 
1-1 

(2.4) &A'U(t) - g(1)(t) - .Al-J-l 
f(j)(t)"= j=O 

In summary, we have shown the way to obtain the boundary values of Alu in terms 
of the data f and g and their derivatives. 

In the next section we will use the related expression for A > w 

(2.5) 

(A - A)'u(t) = A'g(t) + 

) 

g(J)(t)j-1 i-f(t) 

j= 1 i=0 

which is a direct consequence of (2.4). 

3. THE MAIN RESULT 

Let u : [0, T] -+ X be a solution of (1.5). We try to write u = v + u*, where 

u* : [0, T] - X is the solution of a suitable IVP 

(3.1) { u*'(t) 
= Au*(t) + f*(t), 

u*(0) = 
u*, 
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and where v : [0, T] -- X, u* and f* [0, T] -- X can be computed from the data 
u0o, f and g in such a way that the RK method applied to (3.1) does not suffer from 
order reduction. 

This idea is frequently used with v(t) = Eg(t), where E : Y -* X is a linear 
operator such that dEy = y for y E Y. This choice leads to the initial value problem 

(3.2) 
u*'(t) = Au*(t) + f(t) - Eg'(t) + AEg(t), 

u*(0) 
= uo 

- 
Eg(0). 

Since u* E D(A), then the order of the RK discretization of (3.2) is kq+1 (see 
[5, 24]). Thus, for q < p - 1 and this choice of v, the order reduction still appears 
for u*. 

Our goal is to construct a more appropriate correcting term v. To this end we 
define the operators Cr (A) : W - X as 

r-1 

(3.3) Cr(A) = E(A - A)-sK(A)O(A - A)", A > w, r> 1. 
s=O 

Before defining v we give the following technical lemma which will be used in the 
proof of Theorem 1. 

Lemma 3.1. Let r > 1, A > w. Then 

(i) C, (A) is a bounded operator from Wr to W,. 
(ii) For 0 < j < r - 1 and x E Wr it holds that 

(A - A)J C(A)x = 8(A - A)jx. 
Proof. Since K(A)O is a bounded operator from W,_r to W,_r, 0 < s < r - 1, it 
is clear that (A - A)-sK(A)O(A - A)S is a bounded operator from W, to W,. This 
proves (i). 

Let x E W11. Since (A - A)K(A)Ox = 0 and (A - A)(A - A)-lx = x, it turns out 

that, for x E W,, r > 2, 
r-1 

(A - A)C,-(A)x (A - A)K(A)Ox + E(A - A)(A - A)-sK(A)&(A - A)sx 
s=1 

(3.4) = C,-(A)(A - A)x. 

We now proceed by induction in the proof of (ii). For x E W1, 

C1(A)x = K(A)Ox 

and (ii) for r = 1 is a direct consequence of the definition of K(A). Let us now 
assume that (ii) holds for r - 1, r > 2. Let x E W,. By (3.4), for 1 < j < r -1 

O(A - A)JCOr(A)x = o(A - A)j-1C,_-(A)(A - A)x. 

Then using (ii) with r - 1, we conclude that 

((A 
- A)JCr(A)x - &(A - A)J-1(A - A)x = &(A - A)Jx. 

Moreover, (ii) is clear for j = 0 since d(A - A)-1 = 0. [OI 
We are now in a position to define the correcting term. Assume that the solution 

u of (1.5) belongs to Cp+I([O, T], W,) for some 1 < r < p - q. We want to stress 



1534 M. P. CALVO AND C. PALENCIA 

again that, in practice, this condition is natural, since it only demands the solution 
be smooth both in time and space. We define 

(3.5) v(t) = Cr(A)u(t), 0 < t < T, 

where C,(A) is given by (3.3) with A > w fixed. Observe that r = 1 corresponds to 
the usual correction mentioned above with E = K(0). 

Notice that, due to (2.5), v(t) can certainly be computed in terms of f and g 
and their derivatives. For this choice of v it turns out that 

f*(t) = f(t) - Cr(A)u'(t) + ACr(A)u(t), 

U* = [I - Cr(A)]uo. 
Assume also that f E CP([O,T],X), g E CP+I([O,T],Y). Taking derivatives in 

equation (1.5) and using H1 as in Section 2 prove that f(J)(t) e Wr-j-1, O < j < 
r - 1, 0 < t < T and then f*(t) can again be computed in terms of the data and 
their derivatives. More precisely, 

f*(t) = [I - Cr(A)]f (t) + (A - A)-(r-1)K(A)O(A - A)ru(t) 

where &(A - A)ru(t) is given by (2.5). If w < 0, we can choose A = 0 and the 
simpler expression 

f*(t) = [I - Cr()]f(t) - A-(r-1)K() 
•(r(tr-j-ilf(J 

(t) 
j 

Lj=0 

results. 
Recall that the stability function r(z) of the RK method is defined by r(z) - 

1 + zbT(I - zA)-le. Hereafter, we suppose that there exists k > 0 such that, for 
0 < k < k, the operator I - A 0 kA : D(A)S C X' -- X' is invertible (see, e.g., 
[5]). Therefore, for 0 < k < k the equations defining the RK approximations are 
solvable and the operator r(kA) is well defined in X. 

In the following theorem we assume that max km ,< k. Let us denote by u* the 
RK approximation to the solution of (3.1) at time level tn, 0 < n < N. Thus, we 
adopt Un = u* + v(tn) as the numerical approximation to u(tn). 

Theorem 3.2. Let u E CP+I([0, T], W), r = p - q, be the solution of the IBVP 
(1.5). Assume also that f E CP([O, T], X) and g E Cp+1([O, T], Y). Let v : [0, T] - 
X be the correcting term defined in (3.5). Then 

n 
Ilu(tn) - Unil 

= 
llu*(tn) - u;lII Cpn E 

,kmiPm(),+ m=l 

where C > 0 is a constant and 
n 

Pn 1 = I 
r(km-lA)II, m=l 

Im(u) = sup IU(U)|L 0([tm1,t], Wr)' 
q+1<l<p+l 

The constant C depends on T, A and the RK method but it is independent of u, f 
and g. 
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Proof. By Lemma 1, I - Cr(A) : Wr -+ Wr is bounded. The norm of this operator 
is denoted by L. 

Since u*(t) = [I - C,(A)]u(t), 0 < t < T, then u* E Cp+I([O, T], Wr) and 

||u*(l)(t)IIW, ? 
L|u(1)(t)l 

H , < 1 < p + 1. 

Moreover, again by Lemma 1, we have 

a() 
- A)Ju(')(t) - ((A 

- A)JCr(A)u(l)(t), 0 < j K 
r- 1, 

whence 

O(A - *)ju*() (t) = 0, O 
< j < 

r - 
1, 

so that u*(1)(t) E W for 0 < 1 < p+ 1, 0 < t < T. Thus, u* E Cp+I([O, T], Wr) and 

(3.6) IIAJu*(1)(t)ll I L lu'l(t)~, 0 < j r, 0 < 1 <p + 1. 

Now, the proof is straightforward by well-known results concerning RK methods 
for nonhomogeneous problems [5, 10] and by using (3.6). O 

Remark 3.3. It makes sense to carry out corrections with 1 < r < p - q. Then the 
arguments used in the proof of Theorem 1 show that 

n 

(3.7) j|u(tn) 
- 

Un]||< Cpn k Ikqrlm(U). 
m= 1 

Furthermore the results in [5, 24] imply that if r(oo) 
' 1 and under natural stability 

requirements, then for fixed step-sizes km = k 

(3.8) u(t) - 
Unl Cpnkq+r+l E Im(U). 

m=l1 

Thus, in this situation the full order p is achieved with r = p - q - 1. 

Remark 3.4. Fractional orders of convergence are also possible. Let us assume that 
there exists t E (0, 1) such that W1 C W,, where W, is D((w* - A)"), for some 
w* > w. Let us point out that this is the case indeed in many examples (see [4]). For 
instance in the example of equation (2.2), it turns out p = 1/(2p), 1 < p < +oo. It 
is easy to prove that I - Cr (A) maps Wr+1 to Wr+, continuously. Then, according 
to the results in [5], an extra order p is present in (3.7) and (3.8). 

Remark 3.5. If A is the infinitesimal generator of a Co-semigroup of contractions 
in a Hilbert space and the RK method is A-stable, then [16, 35] 

Pn ? etn max{0,w} 

For general Co-semigroups in Banach spaces and fixed step-sizes the bound 

Pn ? etn 
max{ow}1O(v/) 

is optimal [11, 14, 15] and half an order of convergence could be lost. In special 
situations this loss might not occur (see [11]). 

On the other hand, if A is the infinitesimal generator of an analytic semigroup 
(see, e.g., [6, 14, 25, 26]), then 

pn < 
etn max{0,w}O(1). 

This bound is valid even for variable step-sizes if Ir(oo)l < 1 [8, 26]. 
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Remark 3.6. From the definition of C,(A) it is clear that the computation of the 
initial condition u* and each evaluation of f* and the correcting term v require 
the solution of 2r - 1 stationary problems as (2.1). In these stationary problems, 
derivatives of f and g are involved which, in the evaluation of v and f*, may be 

replaced by appropriate approximations of order at least p. Notice also that the 

computation of v(t) is only necessary at the time levels where output is required. 

4. NUMERICAL ILLUSTRATION 

In this section we present two simple experiments to illustrate the results in 
Section 3. Let us consider the IBVP for the one-dimensional heat equation (2.2) 
in the example, with p = +oo, where f, uo, go and gl are chosen for u(x,t) 
sin x/(1 + t) to be its exact solution. As mentioned at the beginning of Section 3, 
introducing the usual correcting term 

v(t) = Eg(t) = go(t) + x[gi(t) - go(t)], 

and defining u* = u - v, the original problem is transformed into the IBVP with 

homogeneous boundary conditions 

u* (x,t) = Ux(x, t) + f(x, t) - 
go(t) 

- x[g,(t) - g,(t)], 
*(X, 0)= = o(x) - go(0) - x[gi(0) - go(0)], 

u* (0, t) = 0, 

u* (1, t) = 0. 

(x E [0, 1], O 1 t < T). For the spatial discretization of (4.1), given an integer 
J > 2, we define the uniform grid xj = jh, 1 < j < J, in the interval [0, 1], 
where h = 1/(J + 1). The second derivative is approximated using the standard 

three-point finite differences. 
For the time integration we use the singly diagonally implicit RK method pro- 

posed in [13] with Butcher array 

Y " 

1/2 1/2 -7 7y 
S- 7 2y 1 - 4y7 

6 1 - 26 6 

where 
1 +r 1 1 

18 2' 6(27 - 1)2" 
This method has order p = 4, stage order q = 1, is A-stable and Ir(oc)l < 1. 

According to the results included in [5, 24] and, since u* E D(A) and p- = 0 (see 
Remark 2), the expected order of the error of the time integrator is three. 

In our numerical experiments, to clearly observe the error due to the time inte- 

grator, we integrate the differential system 

(4.2) { u'(t) = 
AhU*(t) 

+ 
f(*t), 

O < t T 

U (0) = [u*(xi,0), u* (xj, 0)]T, 

where 

f, (t) = (PhA - AhPh)u*(x,t) + Phf*(t). 
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TABLE 1. Errors for r = 1 

h = k 5.000e-02 2.500e-02 1.250e-02 6.250e-03 3.125e-03 
Error 5.9752e-07 7.0579e-08 8.2533e-09 9.8621e-10 1.2009e-10 
Order 3.08 3.10 3.10 3.04 

TABLE 2. Errors for r = 2 

h = k 5.000e-02 2.500e-02 1.250e-02 6.250e-03 3.125e-03 
Error 5.5893e-08 5.5342e-09 4.6049e-10 3.4250e-11 2.3790e-12 
Order 3.34 3.59 3.75 3.85 

Here for p E D(A), Phcp(x, t) = [p(x, t),... , cp(xj, t)]T and Ah is the three-point 
approximation to A. The exact solution of (4.2) is the restriction of the exact 
solution of (4.1) to the grid points, so that there is no spatial error. 

In Table 1 the global errors when h = k have been reported. We observe that 
when halving k the global errors are approximately divided by 8, as corresponding 
to the third order. This means that the order reduction is still present because the 
classical order of the RK method is four. 

In our second experiment we transform the original IBVP (2.2) into the IVP 
(3.1) by introducing the correcting term with r = 2 

v = C2(0)u = Eg + A-IE[g' - Of]. 
Now u* = u - v E D(A2) and, according to Remark 1, the global error of the time 
integrator should exhibit the full order four. In Table 2 the global errors for this 
second experiment are presented. The quantities in the last row approach the full 
order four as k goes to zero, as expected. 

5. THE FULLY DISCRETE PROBLEM 

When solving IBVPs arising in PDEs using the method of lines, first it is nec- 
essary to discretize with respect to the spatial variable and then to time integrate 
the resulting system of ordinary differential equations. Then, in practice, we do 
not time integrate the IVP (3.1) but a discrete version of it. In the numerical 
experiments shown in Section 4 we have computed u* and f* exactly and then 
we have discretized with respect to the spatial variable. However, in general, it 
is not possible to compute (3.1) exactly because it would require the solution of 
certain stationary problems which, in most cases, must be solved numerically. In 
this section we prove that the result in Section 3 also applies to the fully discrete 
problem. As we mentioned in the introduction, one advantage of our approach is 
that standard spatial discretizations can be used. 

Let us denote by 0 < h < ho the parameter of the spatial discretization and let 
(Xh, 11 - 11) be a family of normed spaces approximating X [17, 29]. The link between 
X and Xh is given by certain linear mappings Ph : X -- Xh. For x E X, PhX is the 
approximation to x in Xh. The operator A: D(A) - X is approximated by linear 
operators Ah : Xh - Xh. As usual [17, 29], we assume that the semigroups etAh 
are uniformly bounded, i.e., letAh <| 1 Mewt, t > 0, for some M and w independent 
of h. In this situation, the consistency of the spatial discretization is measured by 

(5.1) ps(h) 
:=- I(w* 

- Ah)- (AhPh - PhA) IWs-Xh, 

for some s > 0 and w* > w. Recall that Ws = D(As). 
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For instance, in the case of finite elements of degree 2s - 1 and a second-order 
elliptic operator A, it turns out that sp,(h) - O(h2s) in the L2-norm [36]. If a finite 
difference scheme of order 2s - 2 is used instead, again for an elliptic operator A of 
second order, we have 

II(AhPh - PhA)IIWS-.Xh = O(h2s-2) 

and, since 1l(w* - Ah)-Il I M/(w* - w), then (ps(h) = O(h2s-2). 
We also assume that p, (h) balances the behaviour of IIAhll in the sense that 

(5.2) IIAV-1(AhPh - PhA) |lwm-x, 
_ 

A, 1 < m < s, 
for some A > 0 independent of h. This condition is clearly satisfied in the context of 
either finite elements or finite differences mentioned above, where IIAh l = O(h-2). 

In the present context of IBVPs also the operators Cr (A) must be approximated. 
In practice, this can be done by using either boundary elements [9, 18] or finite 
differences [22, 23] for discretizing K(A)O. Thus, we assume that Phf*(t), Phv(t) 
and Phu* are approximated by fh*(t), Vh(t) and u,0 in Xh. For solutions u taking 
values in W, we denote by 0 (h) the error of these approximations, i.e., 

I|Phf*(t) - f,(t)ll 
= O(s(h)), 

IIPhu - uh,01o 
= O(=s(h)), 

IlPhv(t) 
- Vh(t)ll = 

O(os(h)), 
as h -- 0+, uniformly in 0 < t < T. 

After the spatial discretization of (3.1), we have to time integrate the differential 
system 

(5.3) 
u'(t) = Ahu(t) + fh*(t), 

(5.3) U(0) = uo 
Let us denote by u*,n 

the RK approximation to the solution of (5.3) at time 
level tn = nk. The fully discrete approximation to u(tn) is thus defined by Uh,n = 

u,, + Vh(tn). 
The fully discrete scheme is said to be stable if there exist k > 0 and p = p(T) > 0 

such that, for 0 < kk k, the operator I - A 0 kAh : Xh -- Xh is invertible, 
0 < h < ho, and 

Ilr(kAh)ll I p, 0 < nk < T. 

Under these assumptions we can establish the result for the full discretization. 

Theorem 5.1. Let u c CP+l([0,T], W,), r = p- q, be the solution of the IBVP 

(1.5). Assume also that f E CP([O, T], X), g E CP+ ([O, T], Y). Assume that (5.2) is 

satisfied for s = r and that the fully discrete scheme is stable. Then, for 0 < k < k, 

IlPhu(tn) - Uh,nl ? < Ctn[kp + (Pr(h) + Or(h)], 

where C = C(u, A, p). 

Proof. For simplicity in the proof we suppose w < 0. 
Set e,n = Phu*(tn) - u l,n. From the definition of Uh,n and the relation u*(t) = 

u(t) - v(t) it is clear that 

IlPhU(tn) - Uh,nl <- Ile-h,nll + IlPhV(tn) - Vh(tn)ll. 
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The second term is bounded by O(•r(h)) and only e*,n 
must be analyzed. Let 

u,n+1 be the RK approximation to the solution of 

(5.4) XZ'(t) 
= 

AhXh(t) + fh*(t) 

at t,+l, starting from Xh(tn) = PhU*(t,). Then, 

e,n+l =- (Uh,n+l - Uh,n+l) + 
(PhU*(tn+l) - Uh,n+l) 

The first two terms on the right-hand side are numerical solutions of (5.4) after one 
step with initial conditions Phu*(tn) and u*,, respectively, so that 

(5.5) 
et,n+1 

= r(kAh)en,n + (Phu*(tn+l) - 
U-,nl). 

Next, in order to use the variation-of-constants formula, it is sufficient to study 
the truncation term Phu*(t+l1) -- iU,,n+l 

We set F*(t) = (f*(t + 
cik))=l, 

U*(t) = 
(u*(t + 

cik))?=1 

and U*'(t) = (u*'(t + 
cik))>=1 

for the differential equation (3.1) 
and F, (t) = (fj (t + 

cik))_1 
for (5.4). 

Direct substitution of Phu* into the equations defining the stages of the RK 
approximation to the solution of (5.4) defines the defects Th,n by 

(5.6) 
PhU*(tn) 

= (e 0 I)Phu*(tn) + (A ? kAh)PhU*(tn) + k(A 0 I)Fh*(tn) + Th,n, 

which can also be written as 

PhU* (ta) = Ph [(e I)u* (t,) + kA 0 U*'(tn)] 

+ kA 0 (AhPh - PhA)U*(tn) + k(A 0 I)(Fh - PhF*)(tn) + Th,n. 

Taylor expansions of U* and U*' at t, show 

p k1 
U*(t) -(e 0 I)*(t) - kA 0 

U*'(tn) 
= 

! (wl 9 
I)U*(1)(tn) 

+ O(kp+) 

l=-q+l 

(recall that wl = ci - lAcl-1, for q + 1 1 < p). Then 

(5.7) -rh,n = 

p 

.(wl 

0 I) Phu*(')(tn) 
- kA 0 (AhPh 

- 
PhA)U*(tn) 

l=q+l 

- k(A 0 I)(Fh - PhF*)(tn) + O(k'. 
On the other hand, the internal stages Uh*,n for the RK approximation to the 

solution of (5.4) starting from Phu*(tn) satisfy 

(5.8) U =,n 
= (e 0 I)Phu*(tn) + (A 0 kAh)U?,n + k(A 0 I)F,7(tn). 

Substracting (5.8) from (5.6) we get 

PhU* (tn) - 
,n (A 0 kAh) [PhU* (tn) - h,n] + Th,n, 

which using (5.7) leads to 

p kl 
PhU*(t) - 

Ui,n 
= (I- A 0kAh)- 

- 
1 (wk l 

I)Phu*()(tn) l=q+1 

(5.9) - (I - A 0 kA)-1kA 0 (AhPh - PhA)U*(tn) 
- (I - A 

? kAh)-lk(A 0 I)(Fh* - PhF*)(tn) + O(kP+I). 
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Let us now consider the equation that defines the RK approximation to the 
solution of (5.4) at time level t,n+1. Direct substitution of Phau* into this equation 
defines the defects 6h,n+1 by 

(5.10) 
Phu*(t+1) =-- Phu*(tn) + k(bT 9 Ah)PhU*(tn) + k(bT I)Fh*(tn) + S•h,n+l, 

which can be written as 

PhU*(tn+l) = Ph [u*(tn) 
+ k(bT ? I)U*'(tn)] + k(bT 0 I)(AhPh - PhA)U*(tn) 

k(bT ? I)(Fh - PhF*)(tn) + 
3h,n+1. 

As 
u*(tn+i) 

- u*(tn) - k(bT 0 I)U*'(tn) 
= 

O(kP+l), then 

(5.11) 6h,n+l = -k(bT 0 I)(AhPh - 
PhA)U*(tn) 

- k(bT 0 I)(F* - 
PhF*)(tn)+ O(kp+ ). 

For the numerical solution ul,n+1 of (5.4) starting from Phu*(tn) we have 

(5.12) Uh,n+l 
= Phu*(tn) + k(bT 0 Ah)Uh*,n + k(bT 0 I)Fh*(tn). 

Substracting (5.12) from (5.10) we get 

PhU*(tn+l) - Uh,n+1= (bT 0 kAh) 
(PhUU*(t) 

- i*,n) + 6h,n+l, 

which, after using (5.9) and (5.11) and some manipulations, leads to 

(5.13) PhU*(tn+l) - U-,n+l - Kh + Lh + MJ + N" + O(kp+l), 
where 

Kh = 
(bT9kAh)(I-kAoAh)-1 !(wl l) Phu*(i)(tn), 

1=q+1 

L• 
= -kbT(I - kA 0 Ah)-(F* - PhF*)(tn), 

M 
=- 

-kbT(I - kA0 Ah)-l[IO (AhPh - PhA)] (U*(tn) - (e O I)u*(tn)), 

and 

N" = -kbT(I - kA 0 Ah)-1[I O (AhPh - PhA)](e 0 I)u*(tn) 

= (I - r(kAh)) Ahl(AhPh 
- PhA)(e 0 

I)u*(tn). 
Now the variation-of-constants formula applied to (5.5) reads 

(5.14) 
n 

eh,n 

= r(kAh)n[Phu 
* 

- u,0] + r(kAh)n- [KJ + 

Lh 

+ M + Nh] + 
O(kP). 

j=-1 

The first term on the right-hand side of (5.14) can be bounded by O(pr,(h)). 
The term Kj turns out to be O(kP+l). To see this, notice that the equality 

1 

A' Phu*() - PhA'u*() + 
ArmA l(AhPh - PhA)Al-mu*(), 

m=l 

together with (5.1) and (5.2), implies the boundedness of | A hP u*(I) | for 1 <1 < r. 

The proof of Theorem 1 in [5] shows that K/ = O(kP+l). Then, the contribution 
of these terms to the error is O(ptkP). 
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On the other hand, |ILj|1 behaves as kO(r,(h)) and, since VI II ~I~IIILLIL I~l UIC~C3 ~3n/\/Tl/j ~IL)3h1t 

II[I 0 Ah (AhPh - PhA)] (U*(tn) 
- (e 0 

I)u*(tn)) I = kO((p,(h)) 

and the operator bT(I - A 0 kAh)-l(kAh) is bounded, the term Mh behaves as 

k(p,(h). Therefore, these terms contribute to the error with 

ptn (O(r(h)) + O(pr,(h))). 

It remains to analyze 

(5.15) S 
r(kAh)-)"jN 

j=1 

which, after summation by parts, can be written as 
n-1 

S r(kAh)"-jAh' (AhPh - PhA)(e 0 I) (u*(tj) - u*(tj+l)) 
j=1 

+Ahl(AhPh 
- PhA)u*(tn) - r(kAh)nAhl(AhPh - PhA)u*(tl). 

As long as (5.1) is satisfied and Ilu*(tj)-u*(tj+l)ll = O(k), then the norm of (5.15) 
is ptnO(p, (h)). O 

Remark 5.2. When using finite elements in the context of the maximum norm, it 
turns out that the norms in (5.2) behave like A(h) = O(|lnhl"), where - 

= s + 1, 
for piecewise linear elements, or - 

= s, for higher order elements [33]. This is not 
a serious problem since A = A(h) enters as a factor in the error constant C in 
Theorem 5.1. 

Remark 5.3. For simplicity we have assumed that the fully discrete scheme is stable. 
In practice, p might depend on h and k. This dependence has been widely studied in 
the literature (see references in Remark 3.5 and, for second-order elliptic operators 
and the maximum norm, [7] for finite differences and [27, 34, 36] for finite elements). 
Typically p exhibits at most weak singularities when h and k go to 0. Thus, as p 
enters again as a factor in C, the full order of convergence could be slightly spoiled, 
due to stability reasons. 

Remark 5.4. If r(oo) : 1, then the optimal order p may be achieved with r 
p - q - 1 (see Remark 3.3). 

Remark 5.5. Fixed step-sizes are required for the treatment of (5.15), when sum- 
mation by parts applies. However, in cases for which 

II(AhPh - PhA)u*(t)ll = O(p,(h)) 

(for instance when finite differences are used), the joint contribution Mjh + Nj' 
can be analyzed without using summation by parts. In these situations variable 
step-sizes are also allowed. 

Remark 5.6. If W1 C W,, 0 < p < 1, and r < p - q, then a fractional order in time 
occurs as in Remark 3.4. In fact, by interpolating the two inequalities 

JIAhPh~fl < AjjHjj + IIPhljA$AII, 

JjPh ll < IlPhhll1 11l, 
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( E W1, we deduce that when IIPhll = 0(1) (a standard situation), 

I(w - Ah)"'PhjII ? Ct, L'11, 
c E W,, for all up' < p. Thus, an extra order 2u' is present for all tp' < up. This 

explains why the extra order pt is observed in full discretizations of (3.2) (see, e.g., 
the numerical experiments in [24]). 
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